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Abstract. Cell classifiers are decision-making synthetic circuits that
allow in vivo cell-type classification. Their design is based on finding a
relationship between differential expression of miRNAs and the cell con-
dition. Such biological devices have shown potential to become a valuable
tool in cancer treatment as a new type-specific cell targeting approach.
So far, only single-circuit classifiers were designed in this context. How-
ever, reliable designs come with high complexity, making them difficult
to assemble in the lab. Here, we apply so-called Distributed Classifiers
(DC) consisting of simple single circuits, that decide collectively accord-
ing to a threshold function. Such architecture potentially simplifies the
assembly process and provides design flexibility. We present a genetic
algorithm that allows the design and optimization of DCs. Breast can-
cer case studies show that DCs perform with high accuracy on real-
world data. Optimized classifiers capture biologically relevant miRNAs
that are cancer-type specific. The comparison to a single-circuit classi-
fier design approach shows that DCs perform with significantly higher
accuracy than individual circuits. The algorithm is implemented as an
open source tool.

Keywords: Synthetic biology · Boolean modeling ·
Genetic algorithms · miRNA profiling · Cell classifiers · Cancer

1 Introduction

Synthetic biology has shown its immense potential in recent years in a wide array
of applications. This is particularly true for the medical field, where synthetic
biological systems are developed for versatile employment from diagnostics to
treatment [24,28]. Research in design and construction of cell classifier circuits
touches on both these areas. Cell classifiers are molecular constructs capable of
sensing certain markers in the environment, processing the input and reacting
with a signal-specific output. A prime example for this are miRNA-based clas-
sifiers that distinguish cell states, e.g., as healthy or diseased, based on their
miRNA expression profiles applying boolean logic (Fig. 1A) [15,26]. These cir-
cuits can be delivered to cells on plasmids or viral vectors and trigger the pro-
duction of a desired output, e.g., a toxic compound causing cell apoptosis in
diseased cells (Fig. 1B).
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Fig. 1. (A) An exemplary boolean design of a two miRNA-input cell classifier. (B) A
schema showing two types of cells, healthy (solid line) and diseased (dashed line). The
classifiers are delivered to the cells, sense the internal input levels and respond with
respect to a given cell condition.

A variety of different approaches to designing synthetic circuits is available
[12,17,25]. However, to confront many application-derived limitations, circuit
designs must be often tailored to rigorous specifications. Since cell classifiers
must be feasible to implement in the lab, many constraints are posed on the
building blocks of these circuits that need to be encoded in the design problem.
So far, only a few different methods for designing single-circuit classifiers were
described [1,15]. Mohammadi et al. proposed two different heuristic approaches
[15]. The procedure performing with the highest accuracy in terms of sample
classification allows to optimize a classifier’s topology using a mechanistic model
of the circuit and a predefined set of biochemical parameters. Another approach
was presented by Becker et al. [1]. The authors propose a method for finding
globally optimal classifiers represented by boolean functions based on binarized
miRNA expression data. To search through the entire space of solutions in a short
time frame the authors apply logic solvers. Becker et al. compare their results
to the previously mentioned state-of-the-art method demonstrating significant
improvement in binary classification of presented classifiers [1].

While this research shows that theoretically single-circuit classifiers can per-
form such classification tasks [1,15], there is a number of challenges for the
approach in application. Depending on the heterogeneity of the data, to obtain
a clear-cut classification often a circuit of high complexity is needed. Gener-
ally, the cost both in time and money for classifier circuit construction in the
lab goes up the larger and more complex the circuit architecture gets, quickly
becoming not feasible at all [15]. A further problem is the robustness needed for
reliable performance when faced with uncertainty and noise in signals and wide
ranging possibilities for perturbations of the classifier functionality in natural
environments. To address these issues the principles of distributed classification,
as inherent in many natural systems such as the immune system and shown
to be an effective strategy, e.g., in machine learning, can be exploited [19,22].
Here, the idea is to design a set of different classifier circuits, also called dis-
tributed classifier, that perform classification in an integrated manner. Such a
set can consist of rather simple classifiers that still perform more accurately than
a complex single circuit classifier, since the individual classification results are
aggregated which compensates for individual mistakes. A theoretical design of
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such a distributed classifier based on synthetic gene circuits was presented by
Didovyk et al. [3]. The classifier is optimized by training a starting population
of simple circuits on the available data similarly to machine learning algorithms,
i.e., by presenting learning examples and successively removing low-performance
circuits. While this work considers only a quite specific scenario being designed
for bacterial cell cultures, it highlights the potential of the underlying idea of
using distributed classifiers.

Here, we adapt the distributed classifier approach proposed by Didovyk et al.
[3] to the problem of cell classifier design. We define a Distributed Classifier (DC)
as a set of single-circuit classifiers that decide collectively based on a threshold
function. Biologically, the threshold may correspond to a certain concentration
of the drug that allows to treat the cells or fluorescent marker allowing to clas-
sify the cell type [3,14,15]. According to Mohammadi et al. [15] such threshold
manipulation may be achieved by changing the biochemical parameters of a cir-
cuit model. Due to the high complexity of the problem, we apply a heuristic
approach to design and optimize DCs, namely, a genetic algorithm (GA). GAs
are evolution-inspired metaheuristics that allow to optimize populations of indi-
viduals [13]. Such evolutionary approaches were successfully applied to various
biological questions [11], e.g., design of synthetic networks and, in particular,
design of single-circuit classifiers [15,25]. Due to the high flexibility of GAs in
terms of design and parameters, the algorithm may be efficiently adapted to the
distributed classifier problem.

In this article, we illustrate the potential of distributed classifiers in appli-
cation, in particular, in cancer cell classification. The following section contains
preliminaries including the definition of a single-circuit and distributed classi-
fier. Section 3 describes the architecture of the proposed genetic algorithm for
the design and optimization of DCs. In Sect. 4 we present case studies performed
on real-world breast cancer data and compare the results with a single-circuit
design method proposed by Becker et al. [1]. Finally, we discuss the distributed
classifier performance and comment on potential future work.

2 Preliminaries

In this section we describe the data we employ to designing classifiers, intro-
duce single-circuit and distributed classifiers and propose binary classification
measures that allow to evaluate their performance.

2.1 miRNA Expression Data

The proposed method is a boolean approach and utilizes binarized and anno-
tated data. While our focus is on miRNA expression profiles, the approach can
naturally be applied to any data set of the format introduced below.

In cancer research, differentially expressed miRNAs provide a valuable source
of information about tumor development, progression and response to a therapy
[8,9]. Thus, dysregulated miRNAs have been considered as potential biomarkers
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for cancer diagnosis and treatment. One of the approaches allowing to distin-
guish up- and down-regulated miRNAs is discretization of the expression data
into a finite number of states. Discretization provides clear and interpretable
information about the miRNA behaviour and makes the learning process from
the data more efficient [6]. However, the procedure is also related to a potential
information loss. We comment on this issue in Sect. 5.

Table 1. A miRNA expression data set.

ID Annots miR-a miR-b miR-c

1 0 0 1 0

2 0 0 1 0

3 1 1 0 0

4 1 0 0 0

5 1 1 0 0

We define a data set D = (S,A) as a finite set of samples S ⊆ {0, 1}m,
where m ∈ N is the number of miRNAs and A : S −→ {0, 1} is sample annota-
tion. Presented as a table, the first column includes unique sample IDs and the
second the annotation of samples (Annots), where 0 is a label assigned to nega-
tive class samples (healthy) and 1 to positive (cancerous). The following columns
are miRNA expression profiles describing the miRNA regulation among the sam-
ples. miRNAs are binarized into two states: up- (1/positive) and down-regulated
(0/negative), according to a given threshold. An example of a data set is pre-
sented in Table 1. A miRNA is non-regulated if for every sample its state is either
0 or 1 (e.g., Table 1, miR-c). Some miRNAs can perfectly separate the samples
into the two categories implied by the annotation (e.g., Table 1, miR-b).

2.2 Single-Circuit Classifier

A single-circuit cell classifier may be represented by a boolean function f :
S −→ {0, 1}. To make a classifier feasible to construct in the lab additional
constraints must be imposed on the function. We adopt here the constraints
introduced by Mohammadi et al. [15]. Accordingly, the function should be given
in Conjunctive Normal Form (CNF), i.e., a conjunction of clauses where each
clause is a disjunction of negated (negative) or non-negated (positive) literals.
Here, the literals correspond to the miRNAs and clauses to the gates. It may
consist of: (i) negative literals only in 1-element clauses (NOT gates) (ii) at
most 3 positive literals per clause (OR gate) (iii) up to 10 literals (miRNAs) and
up to 6 clauses (gates) in total (iv) including at most 4 NOT gates and 2 OR
gates. A circuit topology presented as a CNF satisfying the above-mentioned
constraints directly corresponds to the biological model of the circuit employed
by Mohammadi et al. [15]. An example of a classifier is presented below.

¬miR-a ∧ (miR-b ∨ miR-c) (1)
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The function should output 1/True in case of cancerous and 0/False in case
of healthy cells. The example function presented in Eq. 1 classifies a cell as posi-
tive/1 if miR-a is down-regulated and at least one of the other miRNAs (miR-b
or miR-c) is up-regulated.

2.3 Distributed Classifier

Here, we introduce a concept of Distributed Classifier (DC ) for the cell classi-
fication problem. A DC is a finite set DC = {f1, ..., fc}, where fi is a boolean
function fi : S −→ {0, 1}, to which we will refer from now on as a Rule, c ≤ cmax,
c ∈ N, is the DC size and cmax ∈ N is an upper bound for the DC size. Motivated
by Sect. 2.2 a Rule must be a boolean function in a Conjunctive Normal Form
consisting of at most two single-literal clauses. An example of a DC is presented
below.

{miR-a, miR-b ∧ ¬miR-c, miR-a ∧ miR-d}.

We assume that each Rule in the set must be unique, i.e., we do not allow copies
of Rules in the DC. Also, two identical miRNA IDs cannot occur in one Rule,
i.e., a trivial false function is not allowed (a ∧ ¬a). Thus, the functions are in a
minimised form (a ∧ a = a). The DC categorizes cells according to a threshold
function FDC : S −→ {0, 1} with

FDC(s) =

{
0,

∑c
i=1 fi(s) < θ

1,
∑c

i=1 fi(s) ≥ θ,
(2)

where s ∈ S is a sample and θ ∈ [0, c] is a threshold. Here, we use θ = 	α · c
 as
the threshold, where α is a ratio that allows to calculate the decision threshold
based on the classifier size. The threshold is then rounded half up. FDC returns
1/True if a certain number of Rules (θ) outputs 1/True, e.g., α = 0.5 for c =5
indicates that at least 3 Rules must output 1/True to classify a cell as positive.

Depending on α one may receive different results. In case of a very low thresh-
old, e.g., if only one Rule outputing 1/True results in DC outputing 1/True, the
DC becomes simply a disjunction of Rules. Note, that the function may then
classify in favor of the positive class, as the decision to classify a sample as
positive is in fact made by only one rule. This effect is already reduced by not
considering 2-literal OR gates as rules. Otherwise, if the threshold is c (α = 1),
i.e., all the rules must output 1 for the DC to output 1, the function takes a form
of a conjunction of clauses staying close to the single-circuit classifier. Unlike the
disjunction, a conjunction may classify in favor of the negative class which may
decrease the sensitivity of the method. Applying intermediate thresholds results
in different combinations of those functions, therefore, different classification
performance. In terms of cell classifiers applied as a cancer treatment, one may
consider the following problem: in case of high α, the classifier may misclassify
the diseased cells resulting in false negatives. Thus, the treatment may be less
effective. However, low α may result in misclassification of healthy cells which
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makes the treatment more toxic as the drug is released in those cells (false pos-
itives). Here, one should consider what type of errors is less desirable and apply
a suitable threshold. We discuss this issue further in Sect. 4.

2.4 Evaluation

Here, we introduce the measures we employ to evaluate DCs in terms of binary
classification. Many metrics that may be applied are available [20]. However,
real-world expression data is often heavily imbalanced, i.e., the samples are not
equally represented in the two classes. Data imbalance may significantly influence
the classification results [27]. Balanced Accuracy (BACC) is an intuitive and
easily interpretable metric that allows to balance the importance of samples in
both classes (Eq. 3) [20]. Thus, as a main measure of classifier’s performance we
apply BACC.

BACC(DC,D) =
TP
P + TN

N

2
(3)

where D is a given data set, P and N are the numbers of positive and nega-
tive samples in D, TP is the number of samples correctly classified as positive
and TN is the number of samples correctly classified as negative. TP and TN
are threshold-dependent values, i.e., they may change while applying different
threshold values for a given classifier. To evaluate other aspects of classifier’s per-
formance we employ additional common metrics such as sensitivity (TP/(TP +
FN)), specificity (TN/(TN + FP )) and accuracy ((TP + TN)/(P + N)). Sen-
sitivity represents the ability of the method to correctly distinguish samples
belonging to the positive class, while specificity shows the ability to correctly
distinguish those belonging to the negative class. Accuracy gives information
about the proximity of results to the true values, but does not take data imbal-
ance into account.

3 Genetic Algorithm

In this section we present the architecture of a GA applied to design and opti-
mization of DCs. In the following sections we describe the core structure of the
algorithm as well as the used parameters and operators.

3.1 General Description

The input miRNA expression data must be formatted as described in Sect. 2.1.
To optimize the DCs, seven parameters must be specified: iter - number of GA’s
iterations, ps - population size, i.e., the number of DCs allowed in the popula-
tion, cp - crossover probability, mp - mutation probability, ts - tournament size,
cmax - maximal size of a classifier, i.e., the number of single-circuit classifiers in
a DC, α - the decision threshold ratio. As an output, the algorithm returns a list
of all best solutions found over the GA’s iterations according to their balanced
accuracy (DCbest). In case of single-circuit classifiers, besides the accuracy, the
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complexity of a solution is also taken into account [1,15]. Thus, we choose the
solution consisting of the lowest number of rules as the optimal one. The algo-
rithm starts with a random generation of an initial population (Algorithm1, line
1). Next, the population is evaluated and a list of best solutions DCbest is created
(Algorithm 1, 2). Having the initial population generated, the algorithm starts
with a first generation. At the beginning, ps individuals are selected in so-called
tournaments as potential parents to be recombined, i.e., randomly exchange
genes. (Algorithm 1, 4–7). Many selection operators are described in the litera-
ture. Tournament selection allows to increase the chance of very good solutions
to be selected as parents while maintaining the diversity in the population and
can be efficiently implemented [23]. Next, the crossover occurs with the probabil-
ity cp (Algorithm 1, 8–13). Crossover allows to generate new solutions (children),
based on previously selected individuals (parents). Here, a child classifier may be
created by copying rules from parent classifiers by randomly choosing which par-
ent the next rule is duplicated from. As classifier sizes may differ, we propose two
recombination strategies described further in Sect. 3.4. Next, individuals in the
new population may mutate with the probability mp (Algorithm 1, 14). At the
end of each iteration the list of best solutions (DCbest) is updated (Algorithm 1,
15). All the described steps in a generation are repeated iter times (Algorithm 1,
3–16). Below we explain the details of the algorithm design.

Algorithm 1. A genetic algorithm for designing DCs.
Data: dataset D
Parameters : number of iterations iter, population size ps, crossover

probability cp, mutation probability mp, tournament size ts,
maximal size of DC cmax, threshold ratio α

Output: DCbest

1 Population ←− InitializePopulation(D, ps, cmax)
2 DCbest ←− Evaluate(Population, D, α)
3 for i = 0 to iter do
4 for i = 0 to ps/2 do
5 Parent1, Parent2 ←− SelectParents(Population)
6 Parents ←− Add(Parent1, Parent2)

7 end
8 for i = 0 to ps/2 do
9 Parent1, Parent2 ←− RandomlyChooseParents(Parents)

10 Child1, Child2 ←− Crossover(Parent1, Parent2, cp, cmax)
11 NewPopulation ←− Add(Child1, Child2)
12 RemoveUsedParents(Parent1, Parent2, Parents)

13 end
14 Population ←− Mutate(NewPopulation, D, mp, cmax)
15 DCbest ←− Evaluate(Population, D, α)

16 end
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3.2 Population

Individual Encoding. An individual (i.e., a DC) is encoded as a vector of
single rules (genes). A unique ID and a fitness score is assigned to each individ-
ual. Both, the distributed classifier and single rules must satisfy the previously
described constraints (see Sect. 2.3). Note, rules must consist of unique miRNA-
inputs and DCs must consist of unique rules.

Initial Population. An initial population of a given size (ps) is generated
randomly, i.e., each classifier and each single rule in the classifier is randomly
initialized. Individuals in the population may be of a different size c and maxi-
mally of a size cmax. Thus, to generate a new individual, c must first be defined.
Then, each single rule is generated in a few steps. First, the rule size (RuleSize)
and RuleSize miRNA IDs are randomly chosen. Then, for each miRNA the
sign (positive/negative) is randomly assigned. This procedure (Algorithm 1, 1)
is described in details in the appendix (Algorithm2).

3.3 Fitness Function and Evaluation

As described in Sect. 2.4, to evaluate the classification performance of a dis-
tributed classifier we apply balanced accuracy as the fitness function. To count
TPs and TNs we iterate over samples and evaluate the performance of a DC
according to the threshold function described in Sect. 2.3. The fitness score is
calculated separately for each DC in the population (Algorithm1, 2, 15). As
mentioned before, each iteration of the GA is completed by the update of the
list of the best found solutions (DCbest). If the newly generated DCs perform
with higher BACC than the solutions currently stored in DCbest, the new best
DCs replace the previously found classifiers. If the new DCs have identical scores
as the solutions in DCbest they are added to the list of the best solutions (Algo-
rithm1, 15). The classification threshold is a parameter specified by the user. In
Sect. 4 we discuss the influence of different thresholds on the results.

3.4 Operators

Selection. Parents, to be potential candidates for recombination, are chosen in
a process of tournament selection (Algorithm 1, 4–7). In each selection iteration
two parents are chosen in separate tournaments. To select one parent, a number
of ts individuals is randomly chosen from the current population to participate
in a tournament. The winning candidate is an individual with the best fitness
score. The first and the second parent must be different individuals. Thus, in
each iteration, after choosing the first parent, its ID is temporarily blocked to be
re-selected. The steps are repeated to form a population of selected individuals
of the size ps. For more details see Appendix (Algorithm 3).
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Crossover. In each crossover iteration two parents are randomly chosen from
a population of selected individuals to recombine and generate two new indi-
viduals. Crossover (Algorithm 1, 8–13) occurs with the probability cp. To decide
whether parents exchange information a random number p is chosen. If p ≤ cp
then the two randomly chosen parents recombine. Otherwise, parents are copied
to a new population. If chosen parents are of the same size we perform uniform
crossover (Fig. 2A). To create two new individuals, rules from the first and sec-
ond parent are paired off. Then, the first rule in each pair is assigned with equal
probability to either the first or second child, while the second rule is assigned to
the other child. The step is repeated until all the rules from parents were utilized
and the children consist of the same number of rules as the parents. Otherwise,
if the sizes of parents differ, to preserve a chance for each rule to be exchanged,
we apply an index-based crossover (Fig. 2B). Here, the rules from the first and
second parent are paired off according to a randomly chosen index specifying the
position of a shorter parent in relation to the other one (see example in Fig. 2B).
Paired rules are crossovered uniformly. Rules that cannot be paired (due to dif-
ferent sizes) may be copied to a randomly chosen child. Note, the index-based
crossover may shorten the size of an individual as additional rules cannot be
copied to the larger classifier. Details on the implementation of the index-based
crossover may be found in the Appendix (Algorithms 4 and 5).

Fig. 2. Two crossover strategies applied in the presented GA. Yellow (light) and
green (dark) boxes represent rules in different DCs (parents or children). (A) Uni-
form crossover. (B) Index-based crossover. The crossover index is marked by a red
frame. (Color figure online)

Mutation. Mutation (Algorithm 1, 14) may occur on two levels: both, rules and
inputs may mutate. A rule may (i) be removed from a classifier, (ii) be added
to a classifier and (iii) be copied from one classifier to another. As mentioned
before, index-based crossover may shorten the classifier. Here, two possibilities
to extend the size of a classifier are available: a new rule may be initialized and
added to a classifier or copied from another classifier. These two options balance
the influence of crossover on the size of classifiers. An input may (i) be removed
from a rule, (ii) be added to a rule, (iii) may change the sign (i.e., become
a negative or positive input respecting the constraints described in Sect. 2.3).
Rules, being larger components affecting the classifier size, mutate with a lower
probability than inputs (0.2). Note, the maximal size of a classifier (cmax) must
be preserved. For more details see Appendix (Algorithm 6).
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4 Case Study

In this section, we illustrate the potential of DCs in application by performing
case studies on real-world breast cancer data. We first describe the data sets used
to evaluate DC performance. Then, we present results of parameter tuning and
cross-validation. We analyze the classifier performances, as well as the relevance
of chosen miRNAs. Finally, we compare DCs with a single-circuit classifier design
approach.

4.1 Breast Cancer Data

To evaluate the performance of our approach we use Breast Cancer data sets
previously applied by Becker et al. [1] and Mohammadi et al. [15] to the design
of single-circuit classifiers. Originally the data was described by Farazi et al. [5]
and pre-processed by Mohammadi et al. [15]. The details about the samples and
miRNAs may be found in Table 2. The data set All includes samples of different
breast cancer subtypes. This allows to compare breast cancer samples with the
control samples. The following data sets are subsets representing different breast
cancer subtypes containing information about the differences between particular
subtypes and the control. Note, the data sets are significantly imbalanced as the
negative class is heavily underrepresented. The data is formatted according to
the description presented in Sect. 2.1. In terms of cell classifiers, non-regulated
miRNAs do not carry any information. Thus, we remove them from the data
sets before optimizing the classifiers. The last two columns of Table 2 include
numbers of miRNAs before and after the filtering procedure.

Table 2. Breast Cancer data description.

Dataset Samples Positive Negative miRNAs filtered miRNAs

All 178 167 11 478 57

Triple- 82 71 11 456 52

Her2+ 86 75 11 438 19

ER+ Her- 32 21 11 392 18

Cell Line 17 6 11 375 59

4.2 Parameter Tuning

To tune the parameters of the genetic algorithm we applied a random search
approach. The random search method allows to obtain results similar to the
grid search approach, while decreasing the computational cost [2]. This provides
an opportunity to extend the range of tested parameters. To tune the parameters
we used the Breast Cancer All data set. We performed 3-fold cross-validation
and repeated each GA run 10 times to obtain the average balanced accuracy on
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the test data. We have randomly chosen 300 combinations of 5 parameters in
following ranges: iter: 25–100, step 25; ps: 50–300, step 50; cp: 0.1–1.0, step 0.1;
mp: 0.1–1.0, step 0.1; ts: 10–50%, step 10% (of ps). We tuned the parameters for
α = 0.50 as in intermediate threshold ratio and cmax = 5 and chose a following
set of parameters based on average scores: iter = 75, ps = 200, cp = 1.0,
mp = 0.3, ts = 10% (20 individuals). We applied those parameters to all case
studies presented in the following sections. One may expect that the parameters
optimized for a given decision threshold may further improve the performance
of classifiers. We comment on it briefly in Sect. 5.

4.3 Cross-Validation

To evaluate the classifiers accuracy we performed 3-fold cross-validation for the
breast cancer data sets presented in Sect. 4.1. We partition the data sets into 3
folds nearly equal in terms of the number of samples representing each class per
fold. For each fold we run the algorithm once. For all tests we apply cmax = 5.
The classifier size cmax = 5 allows to preserve the maximal number of miRNA
inputs as proposed for single-circuit classifiers [1,15]. Maintaining similar com-
plexity of classifiers allows to compare the DC-based method to another app-
roach.

We test eight different values of α: 0.25, 0.35, 0.40, 0.50, 0.60, 0.65, 0.75, 0.85,
to evaluate the influence of the threshold function on the classification accuracy.
As mentioned before, the results might be influenced by the parameter tuning
being done for α = 0.5. The best results are presented in Table 3 (complete
results for different α values may be found in the Appendix, Table 5). The DCs
presented in the results are the first best shortest classifiers found by the algo-
rithm. If identical BACC values for the testing data were obtained for more than
one α, we present results for a DC with the highest BACC value on the training
data. In case of equal training BACC values, we present an exemplary result for
a chosen threshold. Table 3 includes the α-s and performance scores. All scores
except of BACCtrain were calculated on the testing data.

Table 3. Results of 3-fold cross-validation. For the Breast Cancer All data set we
found DCs performing with identical score values for two α values (0.50, 0.60) and for
ER+Her- for 6 different α values (0.35, 0.50, 0.60, 0.65, 0.75, 0.85)

Dataset α Sensitivity Specificity ACC BACC BACCtrain

All 0.50 0.92 0.92 0.92 0.92 0.98

Triple- 0.85 0.92 0.75 0.89 0.83 0.98

Her2+ 0.75 0.99 0.61 0.94 0.80 0.96

ER+ Her- 0.50 0.90 0.64 0.82 0.77 0.93

Cell Line 0.25 1.00 1.00 1.00 1.00 1.00
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High BACC values obtained for the training data sets, as well as the average
final population BACC values (0.91), show that the populations converge over
the iterations resulting in high-performing DCs. The BACC values measured
for the testing data sets are significantly higher for the largest and the smallest
data sets than for the intermediate-size ones. Note, that for the data sets Her2+
and ER+ Her- the number of relevant miRNAs is significantly lower than for
the other data sets. Thus, the space of available solutions is also substantially
decreased. Cell Line data set includes 6 different miRNAs that perfectly separate
samples [1]. Thus, excellent performance was expected for this particular data
set. The accuracy is higher than BACC for all data sets as the metric is not
sensitive to data imbalance.

The sensitivity is high for all data sets meaning that the method success-
fully classifies samples belonging to a positive class. However, the specificity is
substantially decreased for Her2+ and ER+ Her- data sets. Note, the data sets
are significantly imbalanced, i.e., the negative class is strongly underrepresented.
Thus, even small number of errors results in substantially decreased specificity.

The best α values differ among the data sets. For the largest one, α is equal
or not much higher than 50%. The data sets of intermediate sizes (Triple- and
Her2+) favoured two more extreme α values. For the ER+Her- several α values
returned identical results (Appendix, Table 5). For the smallest data set the
lowest α value resulted in the highest BACC. Thus, the threshold seems to be
data-specific and should be adjusted to the data set for the DC to perform well.

Applying a certain threshold caused a shift in the rates of certain types of
errors. Here, we analyze false positive rates (FPrate) and false negative rates
(FNrate) observed among all data sets for two extreme applied α values. In
case of a low threshold (0.25, FPrate = 0.34) the shift is displayed towards mis-
classification of the negative samples in comparison to a very high threshold
(0.85, FPrate = 0.27). The high threshold (0.85, FNrate = 0.13) causes more
frequent misclassification of positive samples in comparison to the low one (0.25,
FNrate = 0.04). The influence of a certain threshold on the shift should be fur-
ther investigated. Complete information about FPrates and FNrates for different
thresholds may be found in Appendix, Table 6.

The tests were performed using Allegro CPU Cluster provided by Freie Uni-
versitaet Berlin1. An average run-time is 45 min for one cross-validation fold of
the largest data set employed in the case studies. The tests may be performed on
a personal computer. However, the breast cancer data sets consist of up to 180
samples and up to 60 relevant miRNAs. Thus, one should consider performing
extended scalability tests to estimate the run-time limits of the method.

4.4 Analysis of Input Viability

In this section we analyze miRNA inputs that occur in two exemplary classifiers.
We chose the best performing classifiers for the largest data set (All) representing
all subtypes and the smallest Cell Line data set.

1 https://www.allegro.imp.fu-berlin.de/Cluster.

https://www.allegro.imp.fu-berlin.de/Cluster
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For breast cancer All two different α values resulted in the highest BACC. We
found that classifiers for each cross-validation fold in the data set are identical
for both α values. Also, all the classifiers are of the same size c = 4. In this
case the applied α does not change the threshold function between both values
(0.50 and 0.60), i.e., for all data sets at least 2 Rules must output 1 to classify
a cell as positive. Below we present a DC found for the third cross-validation
fold of the All data set. The classifier consists of 4 different 1-input rules. We
analyzed the miRNAs and found that all of them may be relevant for cancer
sample classification. The classifier is presented below.

{¬miR-378, miR-200c, ¬miR-145, ¬miR-451-DICER1}

miR-378, miR-145, miR-451-DICER1 are described as down-regulated in
breast cancer [4,5], e.g., the study by Ding et al. [4] has shown that underex-
pression of miR-145 is related to increased proliferation of breast cancer cells.
Also, miR-378 occurred as down-regulated in the best 1-input single-circuit clas-
sifier presented previously by Becker et al. for the same data set [1]. miR-200c
is marked as up-regulated in breast cancer in [21].

Another classifier we present is a DC for the third cross-validation fold for
the Cell Line data set:

{¬miR-146a, ¬miR-143}

For most of the α values the performance of found DCs was very low for this
particular fold in the Cell Line data set (BACC = 0.50). A perfect classifier of
size 2 performing with BACC = 1.00 on both training and testing data was found
with α = 0.25, i.e., one of 2 rules must output 1 to classify the cell as positive.
We found that both, miR-146a and miR-143, are described as down-regulated
in breast cancer [10,16].

4.5 Comparison to Other Methods

We optimized single-circuit classifiers with the ASP-based method proposed by
Becker et al. [1] by performing 3-fold cross-validation using the same data sets
and identical division into folds. The objective function of the ASP algorithm is
based on the minimization of the total number of classification errors. Note that
the ASP method may return several optimal classifiers. Different combinations
of FPs and FNs influence the balanced accuracy. Thus, to increase the chance
of ASP to perform well, we have chosen the best classifiers according to their
BACC. Here, we do not compare our results to Mohammadi et al. [15] as the
approach did not perform better than the ASP-based approach as described by
Becker et al. in terms of binary classification [1] (Table 4).
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Table 4. Comparison of results of 3-fold cross-validation for the ASP-based approach
proposed by Becker et al. [1] and for the GA (as in Table 3).

Dataset Method Sensitivity Specificity ACC BACC BACCtrain

All GA 0.92 0.92 0.92 0.92 0.98

ASP 0.96 0.47 0.93 0.72 0.92

Triple- GA 0.92 0.75 0.89 0.83 0.98

ASP 0.89 0.44 0.83 0.67 0.96

Her2+ GA 0.99 0.61 0.94 0.80 0.96

ASP 1.00 0.61 0.95 0.81 0.96

ER+ Her- GA 0.90 0.64 0.82 0.77 0.93

ASP 0.90 0.64 0.82 0.77 0.93

Cell Line GA 1.00 1.00 1.00 1.00 1.00

ASP 0.83 1.00 0.93 0.92 1.00

The DC-based method outperformed the single-circuit approach in 3 of 5 case
studies. For two other data sets the resulting BACC (test) values are either iden-
tical (ER+Her-) or very similar (Her2+). This may imply that further improve-
ment of classifier performance for those data sets is not possible with the cur-
rently applied techniques. The training BACC values are also significantly higher
for the DC-based approach. Note, the DC-based design method explores a dif-
ferent search space than the single circuit approach. Although single circuits are
also allowed as 1-rule classifiers, their complexity is substantially lower in com-
parison to single circuits. Additionally, ASP returns globally optimal solutions,
i.e., it adjusts the classifier perfectly to the training data, which may cause over-
fitting. Although, the classifiers obtain high BACC on the training data (average
for all data sets: 0.95), the classifiers may be too specific to perform well on the
testing data.

The scalability of the ASP-based approach was previously shown by Becker
et al. [1]. As mentioned before, the ASP-based approach optimizes much simpler
classifiers than the GA-based method. Thus, the run-times of both approaches
are not easily comparable.

5 Discussion

In this article, we introduced a new approach to cell classifier design. The concept
of DCs proposed by Didovyk et al. [3] was re-formalized in the context of miRNA-
based cell classification. We designed and implemented a genetic algorithm that
allows design and optimization of DCs. We performed case studies on real-
world data and compared our results to a single-circuit design method obtaining
significantly higher or similar accuracy.
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DCs show immense potential as an alternative to single-circuit designs. Pre-
sented case studies demonstrate the DC’s ability to perform classification on
real-world cancer data. The results obtained on the training data show that
the proposed genetic algorithm allows to optimize classifiers that achieve high
accuracy. The cross-validation demonstrates that the optimized DCs classify
unknown data with high accuracy. The data sets for which the algorithm returns
the worst results (Her2+, ER+Her-) are ones with the lowest number of rele-
vant miRNAs. Thus, the number of possible solutions is significantly decreased
in contrast to other data sets. The best performing decision thresholds differ sig-
nificantly among data sets. However, higher α values seem to be more efficient.
Testing a wide range of thresholds while optimizing the classifiers is strongly rec-
ommended. The comparison to a single-circuit design method shows that DCs
outperformed single-circuit classifiers on most of the presented data sets accord-
ing to balanced accuracy. Although the GA performs better on the largest and
the smallest data sets than on the intermediate-size ones, the results obtained for
both compared methods for Her2+ and ER+Her- are very similar which may
suggest that for those data sets significant improvement is not possible. The
improvements in binary classification may be a result of applying a different
strategy to cell classifier design. Here, single-circuit decision is complemented by
a collective classification based on a threshold function. Thus, the DCs may be
more resistant to data noise than single-circuit classifiers.

Generally, the problem of designing reliable and efficient DCs begins with the
initial data processing. As mentioned before, the data sets employed for the case
studies are significantly imbalanced. Although we apply an objective function
that allows to partially overcome this issue, one may consider applying data bal-
ancing methods such as weighted schemes that balance the sample importance
[7]. Furthermore, our approach to the design of DCs is based on binarized data
sets. As mentioned before, data discretization allows obtaining clear-cut infor-
mation about miRNA regulation and efficient exploration of the search space.
One advantage of this data processing procedure is absorption of noise coming
from, e.g., lab artifacts. However, simultaneously some information that may
be valuable for the classification is lost. Considering binarization according to
a given threshold, miRNAs having their concentrations significantly higher (or
lower, respectively) than the threshold may be more informative. Thus, one may
introduce a multi-objective function that allows to optimize both, the accuracy
and the use of particular miRNAs according to, e.g., a weighted scheme favoring
more reliable miRNAs.

Adapting the ASP approach to classifier design, one could apply ASP to the
optimization of DCs, obtain globally optimal solutions and compare with the
heuristic approach. However, ASP searches through the entire solution space;
thus, the run-time may be significantly increased with the rising number of
possible combinations. As we expect that this may significantly limit the ASP-
based optimization, one may explore other possibilities. In the proposed GA the
initial population is generated randomly, i.e., there is no preference in choosing
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particular miRNAs or gate signs that built rules. One may optimize the initial
population by creating rules taking such preferences into account. The ASP
allows to optimize single short classifiers with relaxed constraints in a short time,
e.g., allowing up to a certain number of errors. This may generate a pool of rules
that are pre-optimized resulting in a better starting point for the algorithm.

Although the results demonstrate that classifiers perform with high accuracy,
the possibilities to further develop the presented method should be explored.
Certainly, the approach must be tested using more data representing variety
of cancer types. Although the proposed genetic algorithm performed well on
the presented case studies, particular parts of the algorithm may be improved.
In this work we do not tune parameters for different applied thresholds due
to time-consuming calculations. It should be further investigated whether the
parameters may be optimized for certain thresholds to improve the performance
of classifiers. Additionally, different selection operators may be tested to evaluate
the influence of a chosen operator on the results [23]. Although tournament
selection is described in the literature as a well-performing operator, some other
operators may be more accurate for particular problems than the commonly
recommended ones.

Although DCs are not yet applied in terms of cancer cell classification, the
approach should be further investigated. DCs are designed based on available
building blocks that are in fact single-circuit classifiers. Mohammadi et al. [15]
presented a biochemical model of a single-circuit classifier that allows to manip-
ulate the output compound concentration. Thus, the biological output threshold
for a given classifier may be adjusted to perform the classification in living cells.
As the on-off single-circuit response may be regulated on the biological level, the
sum of their outputs should also be adaptable for a given DC. This needs to be
investigated through further work in the lab.

Data and Software Availability. The algorithm is implemented in Python
3. The scripts, as well as the data used to tune the parameters and test the
algorithm’s performance including the results, are available at GitHub [18].

Aknowledgements. We would like to thank to P. Mohammadi, Y. Benenson and N.
Beerenwinkel (ETH Zurich) for sharing the breast cancer data with us. MN would like
to thank to J. Bartoszewicz (RKI, Berlin) for his valuable comments and support with
cluster handling.

Appendix

Algorithm2. The algorithm describes the generation of an initial population of
size ps (Sect. 3.2). ps individuals are created randomly, i.e., the number of rules is
randomly chosen and the rules are randomly generated. To create an individual
its size must be first specified (line 2). Then, c rules must be generated in a
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few steps. First, the size of a rule (RuleSize) and miRNA IDs (miRNAs) must
be randomly chosen (lines 4–7). Then, the sign (positive/negative) is randomly
assigned to the miRNAs (line 8). Note that in case of RuleSize = 2, the miRNAs
are connected with an AND. c rules generated as described above create an
individual which may be added to a population (line 12). The steps are repeated
until the population consists od ps individuals (lines 1–11).

Algorithm 2. Initialization of a first population.
Data: dataset D
Parameters: population size ps, maximal size of a DC cmax

Output: Population
1 for i = 1 to ps do

/* randomly choose the size of a new classifier */

2 c ←− RandomlyChooseInRange(1, cmax)
3 for i = 1 to c do

/* randomly choose the size of a new rule */

4 RuleSize ←− RandomlyChooseInRange(1, 2)
/* randomly choose miRNA IDs */

5 miRNAs ←− RandomlyChooseIDs(D, RuleSize)
/* randomly assign miRNA signs */

6 miRNAs ←− RandomlyAssignSigns()
/* create a new rule */

7 Rule ←− CreateARule(miRNAs)
/* add a new rule to a classifier */

8 Individual ←− Add(Rule)
9 end

/* add a new classifier to a population */

10 Population ←− Add(Individual)
11 end

Algorithm3. The algorithm describes the selection of parents that are poten-
tial candidates to recombine (Sect. 3.4). The parents are chosen in tournaments
of size ts, i.e., ts candidates are randomly chosen from the population to partici-
pate in a tournament (lines 1–5, 7–11). In each round 2 parents are selected from
the population. The winning candidates are individuals with the highest BACC
(lines 5, 11). After the first parent is selected its ID is temporarily blocked to
be re-selected (line 6). This allows to diverse the population of selected parents.
The new population of selected parents is then utilized to perform crossover.



Designing Distributed Cell Classifier Circuits Using a Genetic Algorithm 113

Algorithm 3. Selection of parents
Input: Population
Parameters: population size ps, tournament size ts
Output: Parent1, Parent2
/* repeat adding to a tournament ts times */

1 for i = 1 to ts do
/* randomly choose an individual’s ID */

2 Candidate ←− RandomlyChooseInRange(1, ps)
/* add a candidate ID to a tournament */

3 Candidates ←− Add(Candidate)
4 end

/* choose the best parent in a tournament */

5 Parent1 ←− SelectBest(Candidates)
/* block a chosen ID to be re-selected */

6 ps ←− BlockID(Parent1, ps)
7 for i = 0 to ts do

/* randomly choose an individual’s ID */

8 Candidate ←− RandomlyChooseInRange(1, ps)
/* add a candidate ID to a tournament */

9 Candidates ←− Add(Candidate)
10 end

/* choose the best parent in a tournament */

11 Parent2 ←− SelectBest(Candidates)

Algorithm4. The algorithm describes the crossover procedure performed on
the population of selected parents (Sect. 3.4). Each couple of parents chosen ran-
domly from the population of selected parents exchange genes with the probabil-
ity cp. If the randomly chosen probability is lower than cp the parents undergo
the crossover (lines 2–13). Otherwise, the parents are copied directly to a new
population (line 15). If parents are of the same size, uniform crossover is per-
formed (line 11–12). Otherwise, index-based crossover is applied (lines 7–9). Both
procedures are described in details in Sect. 3.4.

Algorithm5. The algorithm describes the index-based crossover that we apply
if the sizes of parents differ to preserve a chance for each rule to be exchanged.
Here, the rules from the first and second parent are paired off according to a
randomly chosen index specifying the position of a shorter parent in relation
to the other one. The index is chosen randomly and is in range between 1 and
ParentSize1-ParentSize2 (Algorithm 4, line 7). Paired rules are crossovered
uniformly. Rules that cannot be paired (due to different sizes) may be copied to
a randomly chosen child. As a result, the number of rules in each child is between
the minimum and the maximum size of the two parents. Note, the index-based
crossover may shorten the size of an individual as additional rules cannot be
copied to the larger classifier. This procedure is described in details in Sect. 3.4.
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Algorithm 4. Crossover
Input: Parent1, Parent2, crossover probability cp
Output: Child1, Child2
/* randomly choose the probability of crossover */

1 probability ←− DrawProbability(0,1)
/* if probability ≤ cp perform crossover */

2 if probability ≤ cp then
/* assign a longer parent to Parent1 */

3 Parent1, Parent2 ←− AssignParentsBySize(Parent1, Parent2)
/* assign sizes of parents */

4 ParentSize1 ←− Size(Parent1)
5 ParentSize2 ←− Size(Parent2)

/* if parents sizes differ perform index-based crossover */

6 if ParentSize1 �= ParentSize2 then
/* randomly choose the crossover index */

7 CrossoverIndex ←− RandomlyChooseInRange(1, ParentSize1 -
ParentSize2)
/* perform index based crossover */

8 Child1, Child2 ←− IndexCrossover(Parent1, Parent2,
ParentSize1, ParentSize2, CrossoverIndex)

9 Population ←− Add(Child1, Child2)
10 else

/* if parents have identical sizes perform uniform crossover

*/

11 Child1, Child2 ←− UniformCrossover(Parent1, Parent2)
/* add children to a new population */

12 Population ←− Add(Child1, Child2)
13 end
14 else

/* if probability > cp copy parents to a new population */

15 Population ←− Add(Parent1, Parent2)
16 end

Algorithm6. The algorithm describes mutation (Sect. 3.4). Mutation may
occur on two levels: both, rules and inputs may mutate. A rule may (i) be
removed from a classifier, (ii) be added to a classifier and (iii) be copied from
one classifier to another (lines 5–17). An input may (i) be removed from a rule,
(ii) be added to a rule, (iii) may change the sign i.e., become a negative or pos-
itive input (lines 19–32). Rules, being larger components affecting the classifier
size, mutate with a lower probability than inputs (0.2). Note, the maximal size
of a classifier (cmax) must be preserved.
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Algorithm 5. Index-based crossover
Input: Parent1, Parent2, ParentSize1, ParentSize2, CrossoverIndex
Output: Child1, Child2

1 for i = 1 to ParentSize1 do
/* decide whether the rule will be exchanged */

/* SwapMask=1 corresponds to rule exchange */

/* SwapMask=0 corresponds to copying without exchanging */

2 SwapMask ←− RandomlyChooseInRange(0, 1)
/* 1 - rule is exchanged */

3 if SwapMask = 1 then
/* if the rules do not pair off */

/* i.e., there is no possibility to exchange rules */

4 if i < CrossoverIndex OR i ≥ CrossoverIndex + ParentSize2
then

/* copy a rule from Parent1 to Child2 */

5 Child2 ←− CopyRule(Parent1, i)
6 else

/* if the rules pair off exchange rules */

/* copy a rule from Parent2 to Child1 */

7 Child1 ←− CopyRule(Parent2, i)
/* copy a rule from Parent1 to Child2 */

8 Child2 ←− CopyRule(Parent1, i)
9 end

10 else
/* 0 - rule is not exchanged */

11 if i < CrossoverIndex OR i ≥ CrossoverIndex + ParentSize2
then

/* copy a rule from Parent1 to Child1 */

12 Child1 ←− CopyRule(Parent1, i)
13 else

/* else copy rules to the parents without exchanging */

/* copy a rule from Parent1 to Child1 */

14 Child1 ←− CopyRule(Parent1, i)
/* copy a rule from Parent2 to Child2 */

15 Child2 ←− CopyRule(Parent2, i)
16 end
17 end
18 end
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Algorithm 6. Mutation
Input: Population, maximal size of a DC cmax

Output: Population

1 for i = 1 to ps do

/* randomly choose the probability of mutation */

2 probability ←− DrawProbability(0,1)

/* if probability ≤ mp perform mutation */

3 if probability ≤ mp then

/* choose the mutation level */

/* 1 corresponds to mutation of a rule */

/* 2-4 corresponds to mutation of an input */

4 MutationLevel ←− RandomlyChooseInRange(1, 5)
5 if MutationLevel = 1 then

/* choose the mutation type */

6 MutationType ←− DrawItem(add, remove, copy)

7 switch MutationType do

8 case add

/* add rule */

9 AddRule(Population, i, cmax)

10 end
11 case copy

/* copy rule */

12 CopyRule(Population, i, cmax)

13 end
14 case remove

/* remove rule */

15 RemoveRule(Population, i)

16 end

17 endsw

18 else

/* choose the mutation type */

19 MutationType ←− DrawItem(add, remove, sign)

20 switch MutationType do
21 case add

/* add input */

22 Rule ←− DrawRule(1, ps)
23 AddInput(Population, i, Rule)

24 end
25 case remove

/* remove input */

26 RemoveInput(Population, i, cmax, Rule)

27 end
28 case sign

/* change sign of an input */

29 ChangeInputSign(Population, i, Rule)

30 end

31 endsw

32 end

33 end

34 end
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Table 5. Results of 3-fold cross-validation.

Dataset α Sensitivity Specificity ACC BACC BACCtrain

All 0.85 0.89 0.83 0.88 0.86 0.96

0.75 0.94 0.81 0.93 0.87 0.98

0.65 0.95 0.72 0.93 0.83 0.98

0.60 0.92 0.92 0.92 0.92 0.98

0.50 0.92 0.92 0.92 0.92 0.98

0.40 0.94 0.64 0.92 0.79 0.99

0.35 0.97 0.72 0.96 0.85 0.99

0.25 0.96 0.72 0.94 0.84 1.00

Triple- 0.85 0.92 0.75 0.89 0.83 0.98

0.75 0.96 0.67 0.92 0.81 0.99

0.65 0.94 0.58 0.89 0.76 1.00

0.60 0.93 0.64 0.89 0.78 1.00

0.50 0.93 0.64 0.89 0.78 1.00

0.40 0.94 0.56 0.89 0.75 1.00

0.35 0.94 0.53 0.89 0.74 0.99

0.25 0.94 0.53 0.89 0.74 1.00

Her2+ 0.85 0.99 0.44 0.92 0.72 0.96

0.75 0.99 0.61 0.94 0.80 0.96

0.65 0.99 0.53 0.93 0.76 0.96

0.60 1.00 0.53 0.94 0.76 0.96

0.50 1.00 0.53 0.94 0.76 0.96

0.40 0.99 0.53 0.93 0.76 0.96

0.35 1.00 0.53 0.94 0.76 0.96

0.25 1.00 0.53 0.94 0.76 0.93

ER+ Her- 0.85 0.90 0.64 0.82 0.77 0.93

0.75 0.90 0.64 0.82 0.77 0.93

0.65 0.90 0.64 0.82 0.77 0.93

0.60 0.90 0.64 0.82 0.77 0.93

0.50 0.90 0.64 0.82 0.77 0.93

0.40 0.90 0.53 0.78 0.72 0.93

0.35 0.90 0.64 0.82 0.77 0.93

0.25 0.90 0.53 0.78 0.72 0.91

Cell Line 0.85 0.67 1.00 0.87 0.83 1.00

0.75 0.67 1.00 0.87 0.83 1.00

0.65 0.67 1.00 0.87 0.83 1.00

0.60 0.67 1.00 0.87 0.83 1.00

0.50 0.67 1.00 0.87 0.83 1.00

0.40 0.67 1.00 0.87 0.83 1.00

0.35 1.00 0.89 0.93 0.94 1.00

0.25 1.00 1.00 1.00 1.00 1.00
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Table 6. FPrate and FNrate values for different thresholds (for all datasets).

Threshold FPrate FNrate

0.85 0.27 0.13

0.75 0.23 0.11

0.65 0.31 0.11

0.60 0.26 0.12

0.50 0.26 0.12

0.40 0.35 0.11

0.35 0.34 0.04

0.25 0.34 0.04
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